Abstract

This work aims at systematic investigations of the proton and neutron pairing properties and Fermi energies in the region from the proton drip-line to the neutron drip-line. In order to obtain a more accurate mass formula with the Skyrme (SKI3) force, the global descriptive power of the Skyrme–Hartree–Fock–Bogoliubov model for pairing properties is applied. Systematic Skyrme–HFB calculations with a mixed volume-surface pairing are carried out to study the ground-state proton pairing gap, neutron and proton pairing energies, and the neutron and proton Fermi energies for about 2095 even-even nuclei ranging from 2 ≤ Z ≤ 110 to 2 ≤ N ≤ 236 . The calculated values of proton pairing gaps are compared with experimental data, by using the difference-point formulas Δ(3), Δ(4), and Δ(5), and compared with the proton pairing gap in the Lipkin–Nogami model. It is shown that the Skyrme (SKI3) force with the mixed volume-surface pairing can be successfully used for describing the ground-state proton pairing gap, proton and neutron pairing energies, and proton and neutron Fermi properties of the investigated nuclei, in particular, the neutron-rich nuclei and the exotic nuclei near the neutron drip-line. On the other hand, the calculated proton pairing gap shows the acceptable agreement with the available experimental values of the proton pairing gap with the use of the difference-point formulas Δ(3), Δ(4), and Δ(5) and with the data of the Lipkin–Nogami model over the whole nuclear chart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call