Abstract

Nucleon form factors play an especially important role in studying the dynamics of nucleons and explicit structure of the wave functions at arbitrary nucleon velocity. The purpose of the paper is to explain theoretically all four nucleon form factors measured experimentally in the cross section measurements (by the Rosenbluth method), yielding almost equal normalized form factors $G^p_E,G^p_M,G^n_M$, as well as in the polarization transfer experiments, where a strongly decreasing proton electric form factor has been discovered. It is shown, using relativistic hyperspherical formalism, that the nucleon wave functions in the lowest approximation provide almost equal normalized form factors as seen in the Rosenbluth cross sections, but in the higher components they contain a large admixture of the quark orbital momenta, which strongly decreases $G^p_E$ and this effect is possibly detected in the polarization transfer method (not seen in the classical cross section experiments). Moreover, the same admixture of the higher components explains the small positive form factor $G^n_E$. The resulting form factors, $G^p_M(Q),G^p_E(Q),G^n_M(Q)$ are calculated up to $Q^2\approx 10$ GeV$^2$, using the standard and the Lorentz contracted wave functions and shown to be in reasonable agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.