Abstract

The ability to quickly refresh gas-jet targets without cycling the vacuum chamber makes them a promising candidate for laser-accelerated ion experiments at high repetition rate. Here we present results from the first high repetition rate ion acceleration experiment on the VEGA-3 PW-class laser at CLPU. A near-critical density gas-jet target was produced by forcing a 1000 bar H $_2$ and He gas mix through bespoke supersonic shock nozzles. Proton energies up to 2 MeV were measured in the laser forward direction and 2.2 MeV transversally. He $^{2+}$ ions up to 5.8 MeV were also measured in the transverse direction. To help maintain a consistent gas density profile over many shots, nozzles were designed to produce a high-density shock at distances larger than 1 mm from the nozzle exit. We outline a procedure for optimizing the laser–gas interaction by translating the nozzle along the laser axis and using different nozzle materials. Several tens of laser interactions were performed with the same nozzle which demonstrates the potential usefulness of gas-jet targets as high repetition rate particle source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call