Abstract

1 MeV electron and 10 MeV proton irradiation of high-efficiency (>18%, 1 sun, AM0) InP solar cells grown by metalorganic chemical vapor deposition (MOCVD) is reported. The MOCVD InP cells are shown to be more radiation resistant than Si and GaAs cells, especially at high fluences. Deep-level transient spectroscopy (DLTS) measurements on the InP solar cells are reported. The defect behavior is compared with cell parameters following irradiation and subsequent annealing stages. The correlation between changes in the solar cell output and the majority carrier (hole) DLTS spectrum reported in irradiated diffused junction InP was not observed in MOCVD InP. An approach to correlating electron- and proton-induced damage in InP solar cells based on calculations of the nonionizing energy loss (NIEL) is described. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.