Abstract

Angular distribution of protons is measured from ethanol droplet spray irradiated by linearly polarized 150 fs laser pulses at an intensity of 1.1 x 10(16)W/cm2. Fast protons (with energies >16 keV ) with an anisotropic distribution can be observed only in or near the polarization plane of the laser fields, while the slow protons (with energies <or=16 keV ) emit with nearly an isotropic distribution. Two-dimensional particle-in-cell simulations suggest that three groups of protons originate from different acceleration regimes in the laser-droplet interaction. The first group with the highest energies is accelerated backwards by the anisotropic charge-separation field near the front surface (laser-droplet interaction side) due to the resonance absorption; the second group (forward emission) is generated by the target-normal sheath acceleration mechanism; and the third group, with the lowest energies, is accelerated by the hydrodynamic expansion of the droplet plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.