Abstract

Proton acceleration induced by a high-intensity ultraviolet laser interaction with a thin foil target was studied on an ultra-short KrF laser amplifier called LLG50 in China Institute of Atomic Energy (CIAE). The ultraviolet laser produced pulses with a high-contrast of 109, duration of 500 fs and energy of 30 mJ. The p-polarized laser was focused on a 2.1 μm gold foil by an off-axis parabola mirror (OAP) at an incident angle of 45°. The laser intensity was 1.2×1017 W/cm2. The divergence angle for proton energy of 265 keV or higher was 30°, which was recorded by a CR39 detector covered with 2 μm aluminum foil in the target normal direction. The maximum proton energy recorded by a CR39 detector covered with a 4 μm aluminum foil was 440 keV, and the proton energy spectrum was measured by a proton spectrometer. The ultraviolet laser acquires a relatively lower hot electron temperature, which can be ascribed to the proportional relationship of Iλ2, but a higher hot electron density because of the higher laser absorption and critical density. Higher electron density availed to strengthen the sheath electric field, and increased the proton acceleration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call