Abstract

AbstractInventux Technologies AG is a high volume producer of Micromorph (a-Si:H/μc-Si:H) tandem modules. The light-induced degradation of hydrogenated amorphous silicon (a-Si:H), called Staebler-Wronski effect (SWE), limits the stabilized efficiency of a-Si:H-based solar cells. Several laboratories have reported on the development of a-Si:H with increased resistance against light-soaking. This so-called ‘protocrystalline' silicon can be grown with plasma-enhanced chemical vapor deposition (PECVD) by diluting the silane source gas with hydrogen.The aim of the work presented in this paper was to scale-up the laboratory results on protocrystalline silicon to a size of 1.43 m2 (Gen. 5) using a process that is suitable for high volume production. We demonstrate that the strict boundary conditions regarding uniformity and growth rate, which are necessary for a production process, can be met. The reduced light-induced degradation of protocrystalline solar cells fabricated with the newly developed process is confirmed by a light-soaking experiment. As an outlook towards future work, we discuss issues related to the implementation of a protocrystalline top cell in the Micromorph tandem configuration. The challenge of choosing the right top-cell thickness is illustrated by experimental results on two tandem cells. The top cells of these tandems contain protocrystalline i-layers of different thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.