Abstract
The distinct reproductive program of orchids provides a unique evolutionary model with pollination-triggered ovule development and megasporogenesis, a modified embryogenesis program resulting in seeds with immature embryos, and mycorrhiza-induced seed germination. However, the molecular mechanisms that have evolved to establish these unparalleled developmental programs are largely unclear. Here, we conducted comparative studies of genome-wide gene expression of various reproductive tissues and captured the molecular events associated with distinct reproductive programs in Phalaenopsis aphrodite Importantly, our data provide evidence to demonstrate that protocorm-like body (PLB) regeneration (the clonal regeneration practice used in the orchid industry) does not follow the embryogenesis program. Instead, we propose that SHOOT MERISTEMLESS, a class I KNOTTED-LIKE HOMEOBOX gene, is likely to play a role in PLB regeneration. Our studies challenge the current understanding of the embryonic identity of PLBs. Taken together, the data obtained establish a fundamental framework for orchid reproductive development and provide a valuable new resource to enable the prediction of gene regulatory networks that is required for specialized developmental programs of orchid species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.