Abstract

We introduce a novel family of protocols for entangling gates for neutral atom qubits based on the Rydberg blockade mechanism. These protocols realize controlled-phase gates through a series of global laser pulses that are on resonance with the Rydberg excitation frequency. We analyze these protocols with respect to their robustness against calibration errors of the Rabi frequency or shot-to-shot laser intensity fluctuations, and show that they display robustness in various fidelity measures. In addition, we discuss adaptations of these protocols in order to make them robust to atomic-motion-induced Doppler shifts as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.