Abstract

Modern Voice-over-IP (VoIP) communication systems provide a bundle of services to their users. These services range from the most basic voice-based services such as voice calls and voicemail to more advanced ones such as conferencing, voicemail-to-text, and online address books. Besides voice, modern VoIP systems provide video calls and video conferencing, presence, instant messaging (IM), and even desktop sharing services. These systems also let their users establish a voice, video, or a text session with devices in cellular, public switched telephone network (PSTN), or other VoIP networks. The peer-to-peer (p2p) paradigm for building VoIP systems involves minimal or no use of managed servers and is therefore attractive from an administrative and economic perspective. However, the benefits of using p2p paradigm in VoIP systems are not without their challenges. First, p2p communication (VoIP) systems can be deployed in environments with varying requirements of scalability, connectivity, security, interoperability, and performance. These requirements bring forth the question of designing open and standardized protocols for diverse deployments. Second, the presence of restrictive network address translators (NATs) and firewalls prevents machines from directly exchanging packets and is problematic from the perspective of establishing direct media sessions. The p2p communication systems address this problem by using an intermediate peer with unrestricted connectivity to relay the session or by preferring the use of TCP. This technique for addressing connectivity problems raises questions about the reliability and session quality of p2p communication systems compared with the traditional client-server VoIP systems. Third, while administrative overheads are likely to be lower in running p2p communication systems as compared to client-server, can the same be said about the energy efficiency? Fourth, what type of techniques can be used to gain insights into the performance of a deployed p2p VoIP system like Skype? The thesis addresses the challenges in designing, building, and analyzing peer-to-peer communication systems. The thesis presents Peer-to-Peer Protocol (P2PP), an open protocol for building p2p communication systems with varying operational requirements. P2PP is now part of the IETF's P2PSIP protocol and is on track to become an RFC. The thesis describes the design and implementation of OpenVoIP, a proof-of-concept p2p communication system to demonstrate the feasibility of P2PP and to explore issues in building p2p communication systems. The thesis introduces a simple and novel analytical model for analyzing the reliability of peer-to-peer communication systems and analyzes the feasibility of TCP for sending real-time traffic. The thesis then analyzes the energy efficiency of peer-to-peer and client-server VoIP systems and shows that p2p VoIP systems are less energy efficient than client-server even if the peers consume a small amount of energy for running the p2p network. Finally, the thesis presents an analysis of the Skype protocol which indicates that Skype is free-riding on the network bandwidth of universities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call