Abstract

DNA end resection is a critical step in the homologous recombination pathway of repairing DNA double-strand breaks (DSBs) that can be visualized in cells by detecting the generation of single-stranded DNA (ssDNA) intermediates formed during the resection of the DSBs. Here, we describe quantitative polymerase-chain-reaction-based procedures to quantitatively measure ssDNA intermediates formed during the DNA end resection. Using the ER-AsiSI system, we use differential digestion patterns by restriction endonucleases that digest unresected double-stranded DNA at DSB sites. For complete details on the use and execution of this protocol, please refer to Fitieh etal. (2022).1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call