Abstract
In this paper, the particle filtering problem is investigated for a class of discrete-time nonlinear complex networks with stochastic perturbations under the scheduling of random access protocol. The stochastic perturbations stem from the on-off stochastic coupling, non-Gaussian noises and measurement censoring. The random occurrence of the on-off node coupling is governed by a set of Bernoulli distributed white sequences, and two kinds of measurement censoring models (i.e. dead-band-like model and saturation-like model) are characterized by the predetermined left- and right-end censoring thresholds. To alleviate data collision over the networks, the so-called random access protocol is elaborately exploited to orchestrate the process of measurement transmission. Moreover, two expressions of the modified likelihood function are established to weaken the adverse effects from the measurement censoring. Accordingly, a protocol-based filter is designed in the auxiliary particle filtering framework, where the new particles are generated from a mixture distribution and the associated weights are assigned based on the derived likelihood function. Finally, a multi-target tracking application is taken into account to demonstrate the practicability and effectiveness of the developed filtering scheme.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.