Abstract
This paper addresses the asynchronous control problem for semi-Markov reaction–diffusion neural networks (SMRDNNs) under probabilistic event-triggered protocol (PETP) scheduling. A semi-Markov process with a deterministic switching rule is introduced to characterize the stochastic behavior of these networks, effectively mitigating the impacts of arbitrary switching. Leveraging statistical data on communication-induced delays, a novel PETP is proposed that adjusts transmission frequencies through a probabilistic delay division method. The dynamic adjustment of event trigger conditions based on real-time neural network is realized, and the responsiveness of the system is enhanced, which is of great significance for improving the performance and reliability of the communication system. Additionally, a dynamic asynchronous model is introduced that more accurately captures the variations between system modes and controller modes in the network environment. Ultimately, the efficacy and superiority of the developed strategies are validated through a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.