Abstract

Absorption and fluorescence properties of protochlorophyllide (Pchlide) monomers and aggregates in various model systems are presented in this study. The absorption and fluorescence maxima, and fluorescence lifetimes of Pchlide monomers were not dependent on liposome composition. Fluorescence quenching experiments using KI and SASLs as fluorescence quenchers, revealed that Pchlide molecules entered a lipid bilayer and were localized close to the polar lipid headgroup area. The process of Pchlide aggregation was evident for high (i.e. at least 9mol%) Pchlide content in liposomes prepared from galactolipids. To our knowledge, this is the first study of Pchlide aggregation in membrane-mimicking model systems. The aggregates showed absorption maxima at 480 and 650nm. Fluorescence of the aggregates measured for excitation at 480nm had a maximum at 656nm and was characterized with two fluorescence lifetime components, i.e. 0.1 and 1–2ns. Pchlide aggregates observed in the buffer had similar position of absorption and fluorescence bands to those observed in liposomes, although the overall fluorescence intensity was considerably lower. Some differences in the relative intensity of Soret absorption bands were observed. These results showed that the presence of liposomes decreased the efficiency of the process of Pchlide aggregation. Water bound at the interface region of AOT/isooctane/water reversed micelles induced disaggregation of the Pchlide aggregates indicating that Pchlide aggregates are buried into hydrophilic core of micelles. The results are discussed with respect to the role of lipids in Pchlide aggregation found in plant etioplasts and their significance for light-induced Pchlide photoreduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.