Abstract

ABSTRACT A subset of Type Ic supernovae (SNe Ic), broad-lined SNe Ic (SNe Ic-bl), show unusually high kinetic energies (∼1052 erg) that cannot be explained by the energy supplied by neutrinos alone. Many SNe Ic-bl have been observed in coincidence with long gamma-ray bursts (GRBs) that suggests a connection between SNe and GRBs. A small fraction of core-collapse supernovae form a rapidly rotating and strongly magnetized protoneutron star (PNS), a proto-magnetar. Jets from such magnetars can provide the high kinetic energies observed in SNe Ic-bl and also provide the connection to GRBs. In this work, we use the jetted outflow produced in a 3D general relativistic magnetohydrodynamic CCSN simulation from a consistently formed proto-magnetar as the central engine for full-star explosion simulations. We extract a range of central engine parameters and find that the extracted engine energy is in the range of 6.231 × 1051−1.725 × 1052 erg, the engine time-scale in the range of 0.479−1.159 s and the engine half-opening angle in the range of ∼9°−19°. Using these as central engines, we perform 2D special relativistic (SR) hydrodynamic (HD) and radiation transfer simulations to calculate the corresponding light curves and spectra. We find that these central engine parameters successfully produce SNe Ic-bl that demonstrates that jets from proto-magnetars can be viable engines for SNe Ic-bl. We also find that only the central engines with smaller opening angles (∼11°) form a GRB implying that GRB formation is likely associated with narrower jet outflows and Ic-bl’s without GRBs may be associated with wider outflows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call