Abstract

The physicochemical properties of 22 protic ionic liquids (PILs) and 6 protic molten salts, and the self-assembly behavior of 3 amphiphiles in the PILs, are reported. Structure-property relationships have been explored for the PILs, including the effect of increasing the substitution of ammonium cations and the presence of methoxy and hydroxyl moieties in the cation. Anion choices included the formate, pivalate, trifluoroacetate, nitrate, and hydrogen sulfate anions. This series of PILs had a diverse range of physicochemical properties, with ionic conductivities up to 51.10 mS/cm, viscosities down to 5.4 mPa.s, surface tensions between 38.3 and 82.1 mN/m, and densities between 0.990 and 1.558 g/cm3. PILs were designed with various levels of solvent cohesiveness, as quantified by the Gordon parameter. Fourteen PILs were found to promote the self-assembly of amphiphiles. High-throughput polarized optical microscopy was used to identify lamellar, hexagonal, and bicontinuous cubic amphiphile self-assembly phases. The presence and extent of amphiphile self-assembly have been discussed in terms of the Gordon parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.