Abstract

The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas-phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)](-) (X = F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum-chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)](-) is the most acidic gas-phase anion, whereas in actual protonation experiments [H(B12Cl12)](-) is the most potent gas-phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.