Abstract

The α-phase formamidinium lead tri-iodide (α-FAPbI3 ) has become the most promising photovoltaic absorber for perovskite solar cells (PSCs) due to its outstanding semiconductor properties and astonishing high efficiency. However, the incomplete crystallization and phase transition of α-FAPbI3 substantially undermine the performance and stability of PSCs. In this work, a series of the protic amine carboxylic acid ion liquids are introduced as the precursor additives to efficiently regulate the crystal growth and phase transition processes of α-FAPbI3 . The MA2 Pb3 I8 ·2DMSO phase is inhibited in annealing process, which remarkably optimizes the phase transition process of α-FAPbI3 . It is noted that the functional groups of carboxyl and ammonium passivate the undercoordinated lead ions, halide vacancies, and organic vacancies, eliminating the deleterious nonradiative recombination. Consequently, the small-area devices incorporated with 2% methylammonium butyrate (MAB) and 1.5% n-butylammonium formate (BAFa) in perovskite show champion efficiencies of 25.10% and 24.52%, respectively. Furthermore, the large-area modules (5cm × 5cm) achieve PCEs of 21.26% and 19.27% for MAB and BAFa additives, indicating the great potential for commercializing large-area PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.