Abstract

Paleoproterozoic igneous rocks in the Archean hinterland of the Paleoproterozoic Trans-Hudson orogen (THO) consist of voluminous late syn-orogenic to post-orogenic monzonite to granite (Hudson granitoids; ≈1850–1810 Ma), and contemporaneous ultrapotassic lamprophyre dykes and volcanic rocks (Dubawnt minettes) that are interbedded with alluvial fan and fluvial deposits (Baker Lake Group, lower Dubawnt Supergroup). They were followed at approximately 1750 Ma by rapakivi granite (Nueltin granite) and porphyritic rhyolite associated with aeolian sandstone (Pitz Formation, middle Dubawnt Supergroup). The tectonic cycle ended with the deposition of conglomerates and sandstones in a large sag basin (Thelon Formation, upper Dubawnt Supergroup, ≈1.72 Ga). The Hudson granitoids, which are strongly concentrated northwest of the THO, were broadly synchronous with terminal collision between the Archean Churchill and Superior cratons and the development of NE-trending ductile structures in the Western Churchill Province (WCP) that may be related to tectonic escape to the northeast. They were emplaced at mid-crustal level and no volcanic equivalents are preserved. Fault-bounded basins containing the minette volcanic rocks are located farther west in a domain dominated more by brittle faulting. The Nueltin granites, emplaced during a period of active extensional faulting, are present in a band extending southwest from the minette basins toward a preserved remnant of the sag basin (the Athabasca basin). Hudson granitoids are largely absent from this band but reappear west of it, indicating a higher crustal level of exposure in a downdropped Nueltin ‘corridor’. The Nd isotope composition of the three suites is similar (minettes: ε Nd,1830 Ma=−5 to −11; Hudson granitoids: ε Nd,1830 Ma=−7 to −13.5; Nueltin suite: ε Nd,1750 Ma=−7 to −10.5), and they have late Archean model ages that match those of average Archean WCP rocks. The Hudson granitoids are rich in inherited Archean zircon, and both granitoid suites are interpreted as crustal melts. Some Nueltin granites and Pitz rhyolites are mingled with basalt, and the Nueltin suite fits a commonly cited model for rapakivi granite production, which postulates injection of basalt into extending, brittly faulted crust. The Hudson granitoids are similar to late syn- to post-orogenic plutons in numerous other collisional hinterlands, which are typically associated with ultrapotassic lamprophyres. The minettes, which have high mg# and bear mantle xenocrysts, must have a mantle source component, and their source region could have been subduction-enriched lithospheric mantle. However, their source had only slightly lower time-integrated LREE enrichment than did that of the granitoids, and the incompatible element signatures of the two suites are strikingly similar. The minette source region may have been in a zone of mixed crust and upper mantle, formed during a shortening event which resulted in crustal thickening and subsequent melting at mid-crustal layers to form the Hudson granitoid plutons. The generation and emplacement of minette melts may have been promoted by extension related to a combination of slab breakoff, gravitational collapse of thickened crust, and strike-slip faulting in the deforming hinterland. Subsequent anorogenic rapakivi granite-basalt activity may have been triggered by lithospheric mantle delamination. The hinterland tectonic cycle of the WCP was repeated in other large Archean terranes that were deformed during the early Proterozoic, but the igneous and sedimentary record is unusually complete in the WCP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call