Abstract

Recent studies have affirmed that higher-order epistasis is ubiquitous and can have large effects on complex traits. Yet, we lack frameworks for understanding how epistatic interactions are influenced by central features of cell physiology. In this study, we assess how protein quality control machinery-a critical component of cell physiology-affects epistasis for different traits related to bacterial resistance to antibiotics. Specifically, we disentangle the interactions between different protein quality control genetic backgrounds and two sets of mutations: (i) SNPs associated with resistance to antibiotics in an essential bacterial enzyme (dihydrofolate reductase, or DHFR) and (ii) differing DHFR bacterial species-specific amino acid background sequences (Escherichia coli, Listeria grayi, and Chlamydia muridarum). In doing so, we improve on generic observations that epistasis is widespread by discussing how patterns of epistasis can be partly explained by specific interactions between mutations in an essential enzyme and genes associated with the proteostasis environment. These findings speak to the role of environmental and genotypic context in modulating higher-order epistasis, with direct implications for evolutionary theory, genetic modification technology, and efforts to manage antimicrobial resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.