Abstract

The enteric nervous system (ENS)--present all along the gastrointestinal tract - is the largest and most complicated division of the peripheral nervous system that can function independently of the brain. The peripheral nerve cells are organized in two separate but interconnected meshworks, called the myenteric and submucous plexus. The nervous control of intestinal motility is primarily governed by the myenteric plexus (MP), which lies in-between the longitudinal- (LM) and circular-muscle layers and regulates their functions. To determine whether the proteomic technology is adapted to the analysis of specific gut tissues, we dissected the MP-LM layers from the jejunum, ileum, and colon of Long Evans rats, homogenized them, and separated the proteins using two-dimensional gel electrophoresis. A subset of all the visualized protein spots, covering the entire range of molecular weights and isoelectric points, was then selected and further analyzed by matrix-assisted laser desorption/ionization-time of flight and liquid chromatography mass spectrometry. We identified around 80 proteins in each gut segment, and among those, five were segment-specific. Most of the proteins identified were derived from muscle cells, but we also detected some neuron-specific proteins. This study represents, to our knowledge, the first extensive protein catalog of a neuromuscular layer of the rat intestine and it may constitute the basis to understand pathophysiological mechanisms related to the ENS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call