Abstract

AbstractThe embryonal carcinoma P19 model has allowed the elucidation of a role for several transcription factors in cell differentiation. Here, the regulation of the RNA polymerase II machinery has been explored through its association with multifunctional complexes involved in transcription. An interaction proteomics analysis of TFIIS-purified RNA polymerase II (RNAPII) holoenzymes during cardiomyogenesis is described. Modifications of protein complexes that may be associated with transcriptionally active and activator responsive RNAPII holoenzymes were detected in a serum and DMSO dependent manner. Subunits of the PAF1 and Mediator complexes were correlated with holoenzymes from non-differentiated and terminally differentiated P19 cultures respectively. Moreover, high levels of nucleolin were identified in all forms of holoenzymes by two-dimensional gel electrophoresis, and suggest that nucleolin could bind to RNAPII and TFIIS. Several proteins that were identified in the RNAPII holoenzymes are known to have functions in mRNA processing and may bind to nucleolin. A novel function for nucleolin is proposed as a possible pivotal platform between transcription, mRNA processing and export.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call