Abstract

The silkworm, Bombyx mori, is an important economic insect for its production of silk. The larvae of many lepidopteran insects are major agricultural pests and often silkworm is explored as a model organism for other lepidopteran pest species. The hemolymph of caterpillars contains a lot of nutrient and immune components. In this study, we applied liquid chromatography-tandem mass spectrometry to gain a better understanding of the larval hemolymph proteomics in B. mori. We identified 752 proteins in hemolymph collected from day-4 fourth instar and day-7 fifth instar. Nearly half the identified proteins (49%) were predicted to function as binding proteins and 46% were predicted to have catalytic activities. Apolipophorins, storage proteins, and 30K proteins constituted the most abundant groups of nutrient-storage proteins. Of them, 30K proteins showed large differences between fourth instar larvae and fifth instar larvae. Besides nutrient-storage proteins, protease inhibitors are also expressed very highly in hemolymph. The analysis also revealed lots of immunity-related proteins, including recognition, signaling, effectors and other proteins, comprising multiple immunity pathways in hemolymph. Our data provide an exhaustive research of nutrient-storage proteins and immunity-related proteins in larval hemolymph, and will pave the way for future physiological and pathological studies of caterpillars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.