Abstract

The menopausal period, an inevitable physiological process for women, is frequently associated with physiological and psychological dysfunction attributable to substantial fluctuation and gradual decrease in female hormones induced by ovarian failure, leading to corresponding symptoms and diseases that impact multiple systems in the body to varying degrees. As prior studies have focused primarily on menopausal syndrome-related pathophysiological changes and hormone replacement therapy effects, here we approached menopausal disease incidence risk and pathogenesis through systemic plasma proteomics analysis. Female Sprague-Dawley rats were randomly divided into sham, ovariectomized, and estrogen treatment after ovariectomy groups (n=9 per group). Tandem Mass Tag quantitative proteomics analysis of their plasma identified over 900 proteins by MS. Between group fold change of >1.2 and p<0.05 (Student’s t-test) identified 121 (including 36 up-regulated and 85 down-regulated), 117 (69 up-regulated and 48 down-regulated), and 109 (41 up-regulated and 68 down-regulated) differentially expressed proteins between groups, respectively. Of these, 5 (GHR, LIFR, apoA IV, RTN, and Lin28b) were verified by parallel reaction monitoring to be reliable. Further application of optimized screening criteria and performance of a series of bioinformatics analyses allowed the selection of 35 optimal differentially expressed proteins. Gene ontology annotation results suggested that the differentially expressed proteins are mainly annotated as protein binding, cell, and single organism process in terms of molecular function, cell composition, and biological process, respectively. KEGG pathway analysis indicated that the PI3-Akt pathway has the highest aggregation degree of differentially expressed proteins. Protein-protein interaction analysis noted GLUT4 as an important node protein. This research is the first to comprehensively analyze plasma protein changes, together with estrogen efficacy, in ovariectomized rats. The findings facilitate our understanding of the molecular mechanism of systemic menopausal changes and provide valuable clues for developing diagnostic biomarkers for menopausal dysfunctions and selecting clinical therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.