Abstract

Most lung disorders are known to be associated to considerable modifications of surfactant composition. Numerous of these abnormalities have been exploited in the past to diagnose lung diseases, allowing proper treatment and follow-up. Diagnosis was then based on phospholipid content, surface tension and cytological features of the epithelial lining fluid (ELF), sampled by bronchoalveolar lavage (BAL) during fiberoscopic bronchoscopy. Today, it appears that the protein content of ELF displays a remarkably high complexity, not only due to the wide variety of the proteins it contains but also because of the great diversity of their cellular origins. The significance of the use of proteome analysis of BAL fluid for the search for new lung disease marker proteins and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.

Highlights

  • Most lung disorders are known to be associated to considerable modifications of surfactant composition

  • Numerous other lung diseases are associated with biochemical abnormalities of surfactant: obstructive lung diseases, infectious and suppurative lung diseases (cystic fibrosis (CF), chronic bronchitis, pneumonia, AIDS-related lung disease), adult respiratory distress syndrome (ARDS), pulmonary oedema, interstitial lung diseases (sarcoidosis, idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, asbestosis), pulmonary alveolar proteinosis (PAP), other diseases specific to infants

  • Since the discovery of the possibility of harvesting the surfactant by bronchoalveolar lavage (BAL), the epithelial lining fluid (ELF) has been the object of an impressive number of studies, allowing analyses of its components, their functions and their possible changes in patients suffering from lung diseases [8]

Read more

Summary

History of surfactant analysis for lung diseases diagnosis

The cellular interface between the lung and the environment is composed of a heterologous epithelium: pseudostratified in the proximal airways, cuboıdal in the distal airways and very thin in the alveoli, the latter representing more than 95% of the lung surface. For example, been proposed as a less invasive alternative to bronchoscopy for the collection of airway secretions from asthmatic subjects and patients with chronic obstructive pulmonary disease (COPD) [11]. It involves the inhalation of hypertonic saline aerosol, a stimulus known to cause bronchoconstriction in asthmatic subjects. This method, mainly restricted to the assessment of airway inflammation in asthmatic patients over 6 years old, is currently extended to the sampling of airways of subjects with cystic fibrosis [12], tuberculosis [12] and various interstitial lung diseases (ILD) [13]. Its current applications remain limited to the analysis of hydrogen peroxide, lipid peroxidation and nitric oxide derivatives, and some inflammation parameters present in the exhaled breath condensate [14,15,16]

Phospholipid analyses
Cell analyses
Nucleic acid analyses
Protein analyses
Protein markers originating from serum
Lung-specific protein markers
Protein markers produced by lung inflammatory cells
Other protein markers
Findings
Future directions of BALF proteomics-based diagnosis of lung diseases

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.