Abstract

Background: Salinity is a major abiotic stress that limits plant growth and development. Salinity affects several physiological and biochemical characteristics adversely, which results in oxidative stress in plant species. Plants change the protein pattern to cope with salinity stress. The identified salt-responsive proteins in alfalfa are involved in energy and metabolism, photosynthesis, regulation of carbohydrates, transcription/translation, signal transduction, stress/redox homeostasis, ion binding, and stress and defense with ROS scavenging and detoxification. Objective: The present research aimed to study the response of two contrasting alfalfa varieties to salt stress, and to identify the altered leaf proteins by two-dimensional gel electrophoresis and MALDI-TOF/TOF/MS spectrometry. Methods: Salinity stress significantly decreased shoot fresh and dry weights in both Synthetic II (salt-tolerant) and Khajeh (salt-sensitive) varieties, and K+/Na+ ratio in Khajeh, while it significantly increased K+/Na+ ratio, soluble sugars, chlorophyll a and catalase activity in Synthetic II, and peroxidase activity in Khajeh. Conclusions: Salinity stress reduced the yield of alfalfa, but the reduction was more pronounced in the sensitive variety of Khajeh. The salinity-tolerant variety, Synthetic II, responded better to salinity stress in terms of K+/Na+ ratio, soluble sugars, chlorophyll a and catalase activity as compared to Khajeh. Proteome analysis showed that the proteins involved in energy metabolism, transcription/- translation, photosynthesis, electron transfer, and defense were more important than other functional categories under salinity stress. These proteins mainly increased in the salt-tolerant variety, whereas they decreased in the salt-sensitive variety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.