Abstract

This study aimed to comprehensively understand the proteomic characteristics and modulation of the neural microenvironment with N-methyl-d-aspartate (NMDA)-induced neuronal degeneration in the retina and optic nerve at 12 h after intravitreal injection of 40 nmol NMDA. Male Sprague–Dawley rats were sacrificed at 12 h after intravitreal injection of 40 nmol NMDA. PBS-injected eyes served as controls. The key cell death-linked proteins from the retina and optic nerve tissues were assessed by a mass spectrometry-based label-free approach. In proteomics analysis, we identified 3532 proteins in retinal tissues and 2593 proteins in optic nerve tissues. The ACSL3 (Q63151) and Prnp (P13852) proteins were upregulated in the NMDA-damaged retina and connected with ferroptosis. The Gabarapl2 (P60522) protein was upregulated in NMDA-damaged optic nerves and connected with autophagy. We performed parallel reaction monitoring (PRM) to validate the liquid chromatography-tandem mass spectrometry (LC–MS/MS) results. Data are available ProteomeXchange with identifiers PXD022466 (label-free quantification) and PXD022729 (PRM validation). SignificanceExcitotoxicity is one of the pathogeneses of various retinal disorders, including glaucoma, retinal ischemia-reperfusion and traumatic optic neuropathy. This study indicated that ferroptosis may be linked to pathological cell death in the retina with NMDA insult. Autophagy may be induced by NMDA overstimulation in both the optic nerve and retina. Regulating these types of death simultaneously may provide the maximum benefit for retinal disease therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call