Abstract

BackgroundShiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer’s patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects.Methodology/Principal FindingsEnterohemorrhagic E. coli strain 86–24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets’ guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope.SignificanceProteomic analysis afforded insights into system-wide adaptations of strain 86–24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM were altered. Enhanced expression of type III secretion system effectors correlated with a metabolic shift back to a more aerobic milieu in vivo. Apparent pathogen pattern recognition molecules from piglet intestinal secretions adhered strongly to the bacterial cell surface.

Highlights

  • Enterohemorrhagic E. coli (EHEC) are a group of bacteria containing many serotypes responsible for outbreaks of bloody diarrhea occasionally leading to hemolytic uremic syndrome (HUS) and neurological abnormalities which in severe cases can be fatal [1]

  • These complications are attributed to Shiga toxins, one of which - Shiga toxin-1 (Stx-1) - is shared with Shigella dysenteriae type 1, acquired via horizontal gene transfer through phages [2]

  • Conventional piglets are naturally not susceptible to EHEC, we consider the gnotobiotic piglet model of infection with EHEC strains useful to obtain systems-level insights into the molecular pathogenesis associated with Stx-production and with the characteristic bacterial attaching-effacing colonic lesions. which resembles that observed in humans [6]

Read more

Summary

Introduction

Enterohemorrhagic E. coli (EHEC) are a group of bacteria containing many serotypes responsible for outbreaks of bloody diarrhea occasionally leading to hemolytic uremic syndrome (HUS) and neurological abnormalities which in severe cases can be fatal [1]. These complications are attributed to Shiga toxins, one of which - Shiga toxin-1 (Stx-1) - is shared with Shigella dysenteriae type 1, acquired via horizontal gene transfer through phages [2]. Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer’s patches and formation of attachment/effacement (A/E) lesions These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call