Abstract
Dementia is a major public health burden, and the World Health Organization has identified this disorder as a major public health priority. There are limited treatment options due to poor understanding of key mechanism of dementia pathogenesis. Dementia has been regarded as a proteinopathy in which alterations of brain protein structure and function are the key features of the disorder. Proteinopathy can be triggered by degenerative protein modifications (DPMs), misfolding, aggregation, and deposition of the malformed proteins. Despite the clinical significance of alteration in protein abundances, DPMs, protein misfolding, and aggregation, the molecular mechanism that promotes these changes remains inadequately understood, mostly due to technical challenges. Proteomic is a powerful, sensitive, and advanced tool to study the progressive brain tissue damage that critically dysregulates key enzymes, accumu‐ lates modified proteins, and causes protein misfolding and aggregation, resulting in cognitive decline and dementia. The proteomic profiling of protein abundances and correlating DPMs with protein misfolding and aggregation have potential to elucidate underlying molecular mechanism of the disease. This chapter summarizes the recent proteomic developments for studying brain proteome, DPMs, and protein aggrega‐ tion mechanism that may lead to dementia. We attempted to correlate DPMs and its impact on protein aggregation and deposition in brain tissues.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.