Abstract

BackgroundWe previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes.MethodsFive proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women’s Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression.ResultsB2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation.ConclusionsPlasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers.Clinical trials registrationClinicalTrials.gov identifier: NCT00000611

Highlights

  • We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy

  • A study of CHD risk prediction models [10] in the Women’s Health Initiative (WHI) postmenopausal hormone therapy (HT) trial cohort found that the area under the receiver-operator-characteristic curve (AUC) increased from 0.73 to 0.75 when certain non-traditional risk factors were added

  • Case-control comparisons based on blood drawn at 1 year following randomization are shown in Table 2, excluding cases occurring in the first year of trial participation

Read more

Summary

Introduction

We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Risk factor epidemiology has played a crucial role in attempts to understand CVD mechanisms and pathways, and has led to the identification of effective approaches to disease prevention, for example through the treatment of hypertension [2], hypercholesterolemia [3], and arguably chronic inflammation [4] Risk factor data, such as those arising from the Framingham Study cohort, have been effectively used to develop risk prediction models for CHD [5,6] and for stroke [7,8]. A study of CHD risk prediction models [10] in the Women’s Health Initiative (WHI) postmenopausal hormone therapy (HT) trial cohort found that the AUC increased from 0.73 to 0.75 when certain non-traditional risk factors were added While these analyses imply an ability to assign CHD and stroke risk estimates that vary by several-fold among individuals, there is still a limited ability to identify individuals who are highly likely to develop disease, say, in the 5 years. Additional blood-based biomarkers may lead to improvements in risk discrimination and risk prediction

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.