Abstract
BackgroundChickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.ResultsUnder progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g− 1 FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins—including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein—may play a functional role in drought tolerance in chickpea.ConclusionsThis study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.
Highlights
Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress
We identified some novel dehydration stress-responsive leaf proteins, differentially expressed in chickpea seedlings exposed to a progressive stress situation
Dehydration stress responses of chickpea seedlings at the physiological level Physiological responses to dehydration stress were monitored in 28-day-old seedlings of the selected tolerant (T) and sensitive (S) chickpea genotype to identify differences in drought resistance
Summary
Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Climate changes are estimated to progressively increase the frequency, severity, and duration of drought periods [2]. To meet the needs of the growing world population, stabilizing or increasing yield potential under drought stress is imperative [3]. Plants respond to stress by reprogramming their proteins to ensure a steady-state of vital metabolic processes [4]. To this end, identifying novel proteins and responsive pathways involved in stress adaptation will provide new insights and enable direct genetic manipulations to improve climate-resistant crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.