Abstract

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.

Highlights

  • Rhizomania, a disease that reduces root quality and yield in sugar beet (Beta vulgaris) is one of the most widely prevalent and economically important diseases affecting sugar beet production throughout the world [1,2,3]

  • Using statistical analysis of the unweighted spectrum counts (SpC) and average total ion current (Avg TIC) we found that eight proteins were more highly expressed during infection with the standard A-type strain (BNYVV-A)

  • The study presented represents the first large scale shotgun proteomic analysis of sugar beet, which, combined with homology based database searching against the Uniprot Amaranthaceae protein sequence database yielded the confident identification of 203 proteins from Beet necrotic yellow vein virus (BNYVV) infected sugar beet

Read more

Summary

Introduction

Rhizomania, a disease that reduces root quality and yield in sugar beet (Beta vulgaris) is one of the most widely prevalent and economically important diseases affecting sugar beet production throughout the world [1,2,3]. A number of single dominant resistance genes (known as Rz genes) have been identified for control of BNYVV beginning with the discovery and introgression of the Rz1 resistance gene [8,9], which became widely planted throughout all areas where rhizomania threatens sugar beet production. The widely used Rz1 gene prevents symptom development, the virus can still replicate at a low level in resistant plants. This has resulted in emergence of BNYVV variants that can accumulate enough in the presence of the resistance gene and overcome Rz1 resistance in the field

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call