Abstract

Abstract Objective The aim of this study was to evaluate a multiple immunoaffinity protein depletion (multiple affinity removal system, MARS) pre-treatment strategy with subsequent two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and peptide mass finger printing analysis for the detection of ovarian cancer-associated plasma proteins. Materials and Methods Following immunoaffinity depletion, total plasma protein content was reduced by 84.2 ± 1.8% (mean ± SE, n = 32). The number of proteins detected in the control and ovarian cancer groups was 349 and 357, respectively. This represented an increase in spot detection of almost twofold when compared to 2D PAGE displays of untreated plasma (174 spots). Of the proteins displayed, post-depletion, 300 (control) and 302 (ovarian cancer, OC) were common within each group. PDQuest analysis indicated that 109 protein spots were statistically different between the two groups and, of these, 59 exhibited greater than or equal to twofold difference in spot density (Student’s t test, p = 0.01). Thirty-nine of these proteins were successfully identified with reliable confidence. Results and Discussion The data obtained in this study demonstrates that immunodepletion of plasma before 2D PAGE profiling have generated identifiable plasma proteins that are differentially expressed in the high-grade ovarian cancer sample set compared to controls. This approach, therefore, may be useful in identifying candidate biomarkers for inclusion in multi-marker tests for ovarian cancer that may exhibit greater sensitivity and specificity than those currently available. It was evident, however, from the predominant identification of host response proteins that immunodepletion did not generate sufficient levels of enrichment of lower abundance tumor-specific proteins to facilitate detection.

Highlights

  • Almost 1,500 new cases of ovarian cancer were diagnosed in Australia in 2006

  • The hypothesis to be tested in this study was that immunodepletion of six high-abundance proteins from plasma before two-dimensional polyacrylamide gel electrophoresis (2D PAGE) display would enhance the detection and identification of disease-associated changes in ovarian cancer plasma proteins

  • Total plasma protein concentration averaged 54±2.6 mg/ml (n=32), of which 1.08±0.02 mg of protein was loaded onto the Multiple affinity removal system (MARS) column

Read more

Summary

Introduction

Almost 1,500 new cases of ovarian cancer were diagnosed in Australia in 2006. The relative 5-year survival rate for women diagnosed with ovarian cancer from 1998 to 2002 was 42%, predominantly because of diagnosis at an advanced stage. An overall 5-year survival rate of 95% can be achieved, if ovarian cancer is detected early. The asymptomatic nature of the disease and the low sensitivity and specificity of the currently available test utilizing CA-125 present a major challenge for achieving early detection [1]. Proteomic profiling has afforded insights into diseaseassociated changes in protein expression and may prove its utility in identifying ovarian cancer biomarkers [2,3,4]. Limitations of the proteomic profiling of human plasma have been the interference from high-abundance proteins

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call