Abstract

Renal injury in lupus nephritis (LN) does not manifest as one uniform entity. The clinical presentation, management, and prognosis of membranous LN (MLN) differ from that of the proliferative LN (PLN). Differentiating the molecular mechanisms involved in MLN and PLN and discovering the reliable biomarkers for early diagnosis and target therapy are important. We compared the kidney protein expression patterns of 11 pure MLN and 12 pure PLN patients on formalin-fixed paraffin-embedded (FFPE) kidney tissues using label-free liquid chromatography-mass spectrometry (LC-MS) for quantitative proteomics analysis. FunRich software was used to identify proteins in differentially expressed pathways. Quantitative comparisons of differentially expressed proteins in each patient were further analyzed based on protein intensity levels determined by LC-MS. The protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was established through Search Tool for the Retrieval of Interacting Genes database (STRING) website, visualized by Cytoscape. A total of 5112 proteins were identified. In total, 12 significantly upregulated (fold change ≥2, p < 0.05) proteins were identified in the MLN group and 220 proteins (fold change ≥2, p < 0.05) were upregulated in the PLN group. Further analysis showed that the most significant upregulated pathway involved in MLN was histone deacetylase (HDAC) class I pathway, and the three most significant upregulated pathways in PLN were interferon signaling, interferon gamma signaling, and the immune system. Next, we selected sirtuin-2 (SIRT2) in MLN, and vascular cell adhesion protein 1 (VCAM1) and Bcl-xl in PLN for further mass spectrometry (MS) intensity and PPI analysis. SIRT2 expression was significantly increased in the MLN group compared with the PLN group, and VCAM1, Bcl-xl expression was significantly increased in the PLN group compared with the MLN group, based on MS intensity. These results may help to improve our understanding of the underlying molecular mechanisms of MLN and PLN and provide potential targets for the diagnosis and treatment of different subclasses of LN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call