Abstract

Mesenchymal stem cells (MSCs) are promising seed cells for tissue engineering of blood vessels. As seed cells, MSCs must endure blood fluid shear stress after transplantation. It has been shown that fluid shear stress can regulate the proliferation and differentiation of MSCs. However, the effects of fluid shear stress on MSCs including the types of proteins modulated are still not well understood. In this study, we exposed human mesenchymal stem cells (HMSCs) to 3 dyn/cm(2) shear stress for 6 h and compared them to a control group using proteomic analysis. Thirteen specific proteins were affected by shear stress, 10 of which were up-regulated. Shear stress especially induced sustained increases in the expression of Annexin A2 and GAPDH, which have been specifically shown to affect HMSCs function. We present here the first comparative proteome analysis of effect of shear stress on HMSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.