Abstract

Deoxynivalenol (DON) is a destructive mycotoxin produced by the fungal pathogen Fusarium graminearum in the devastating cereal disease Fusarium head blight (FHB). Host resistance to FHB has been identified within some of these crops (e.g., wheat, barley, corn); however, identification of how the host reduces the production of, and tolerates, DON to lessen the effects of the disease still requires further discovery. The field of quantitative proteomics is an effective tool for measuring and quantifying host defense responses to external factors, including the presence of pathogens and toxins. Success within this area of research has increased through recent technological developments (e.g., instrument sensitivity) and the accessibility of data analysis programs. One advancement we leverage is the ability to label peptides with isobaric mass tags to allow for sample multiplexing, reducing mass spectrometer run times, and providing accurate quantification. In this protocol, we exemplify this methodology to identify protein-level responses to DON within both FHB-resistant and FHB-susceptible Triticum aestivum cultivars using tandem mass tags for quantitative labeling combined with liquid-chromatography-MS/MS (LC-MS/MS) analysis. Furthermore, this protocol can be extrapolated for the identification of host responses under various conditions, including infection and environmental fluctuations, to elucidate changes in proteomic profiling in diverse biological contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call