Abstract

Moyamoya disease (MMD) is a rare steno-occlusive and slowly progressing cerebrovascular disorder. The detailed mechanism of the underlying pathogenesis is still blurry. Tandem Mass Tag-labeled quantitative proteomics was performed on serum-derived exosomes (SDEs) extracted from adult patients diagnosed with pure ischemic MMD or hemorrhagic MMD and healthy controls. Then mouse brain vascular endothelial cell (EC), human umbilical vein EC, neuroblastoma cell, and human hepatocyte cell were treated with exosomes, and changes of the protein expression in mouse brain vascular EC cells were identified. Proteomics analysis results showed that 859 shared proteins were detected in SDEs from ischemic and hemorrhagic MMD patients with 231 differently expressed compared with healthy controls. Bioinformatic analysis revealed dysregulated cell growth and maintenance and indicated disturbed actin dynamics in MMD, with CFL1 (Cofilin-1) and ACTR2/3 (actin-related protein 2/3; also known as ARP2/3) downregulated in ischemic and hemorrhagic patients’ SDEs. We also found immunity dysfunction in hemorrhagic MMD. Following treatment with MMD SDEs, mouse brain vascular EC cells showed significantly higher levels of proliferation and more ethynyl-2-deoxyuridine-positive cells compared with the healthy control group, while there were no obvious changes in the human umbilical vein EC and human hepatocyte cell. Interestingly, we also found that SDEs from ischemic MMD promoted neuroblastoma cell proliferation. Proteomic analysis of mouse brain vascular EC cells suggested that SDEs from hemorrhagic MMD patients induced dysfunction of the mitochondria in cerebrovascular ECs. This study highlighted potential molecular mechanisms underlying the pathogenesis of MMD patients, thereby providing new therapeutic strategies for MMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.