Abstract

BackgroundThe molecular mechanisms governing right atrial (RA) and ventricular (RV) hypertrophy and failure in chronic pulmonary hypertension (CPH) remain unclear. The purpose of this investigation was to characterize RA and RV protein changes in CPH and determine their adaptive versus maladaptive role on hypertrophic development.MethodsNine dogs underwent sternotomy and RA injection with 3 mg/kg dehydromonocrotaline (DMCT) to induce CPH (n=5) or sternotomy without DMCT (n=4). At 8-10 weeks, RA and RV proteomic analyses were completed after trypsinization of cut 2-D gel electrophoresis spots and peptide sequencing using mass spectrometry.ResultsIn the RV, 13 protein spots were significantly altered with DMCT compared to Sham. Downregulated RV proteins included contractile elements: troponin T and C (-1.6 fold change), myosin regulatory light chain 2 (-1.9), cellular energetics modifier: fatty-acid binding protein (-1.5), and (3) ROS scavenger: superoxide dismutase 1 (-1.7). Conversely, beta-myosin heavy chain was upregulated (+1.7). In the RA, 22 proteins spots were altered including the following downregulated proteins contractile elements: tropomyosin 1 alpha chain (-1.9), cellular energetic proteins: ATP synthase (-1.5), fatty-acid binding protein (-2.5), and (3) polyubiquitin (-3.5). Crystallin alpha B (hypertrophy inhibitor) was upregulated in both the RV (+2.2) and RA (+2.6).ConclusionsIn early stage hypertrophy there is adaptive upregulation of major RA and RV contractile substituents and attenuation of the hypertrophic response. However, there are multiple indices of maladaptive pathology including considerable cellular stress associated with aberrancy of actin machinery activity, decreased efficiency of energy utilization, and potentially decreased protein quality control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call