Abstract

The identification of key pathways dysregulated in non-small cell lung cancer (NSCLC) is an important step toward understanding lung pathogenesis and developing new therapeutic approaches. Toward this goal, reverse-phase protein lysate arrays (RPPA) were used to compare signaling pathways between NSCLC tumors and paired normal lung tissue from 46 patients and assess their association with clinical outcome. After RPPA quantification of 63 proteins and phosphoproteins, tissue pairs were randomized to a training set (n = 25 pairs) and test set (n = 21 pairs). In the training set, 15 protein markers were differentially expressed between tumors and normal lung (p ≤ 0.01), including markers in the PI3K/AKT and p38 MAPK signaling pathways (e.g., p70S6K, S6, p38, and phospho-p38), as well as caveolin-1 and β-catenin. A four-protein signature (p70S6K, cyclin B1, pSrc(Y527), and caveolin-1) independent of histology classified specimens as tumor versus normal with a predicted accuracy of 83%, sensitivity of 67%, and specificity of 100%. The signature was validated in the test set, correctly classifying all normal tissues and 14 of 21 tumor tissues. RPPA results were confirmed by immunohistochemistry for caveolin-1 and p70S6K. In tumors from patients with resected NSCLC, expression of proteins in the energy-sensing AMPK pathway (pLKB1, AMPK, p-Acetyl-CoA, pTSC2), adhesion, EGFR, and Rb signaling pathways was inversely associated with NSCLC recurrence. These data provide evidence for dysregulation of several pathways including those involving energy sensing and adhesion that are potentially associated with NSCLC pathogenesis and disease recurrence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.