Abstract

Acute myeloid leukemia (AML) is believed to arise from leukemic stem-like cells (LSC) making understanding the biological differences between LSC and normal stem cells (HSC) or common myeloid progenitors (CMP) crucial to understanding AML biology. To determine if protein expression patterns were different in LSC compared to other AML and CD34+ populations, we measured the expression of 121 proteins by Reverse Phase Protein Arrays (RPPA) in 5 purified fractions from AML marrow and blood samples: Bulk (CD3/CD19 depleted), CD34-, CD34+(CMP), CD34+CD38+ and CD34+CD38-(LSC). LSC protein expression differed markedly from Bulk (n=31 cases, 93/121 proteins) and CD34+ cells (n= 30 cases, 88/121 proteins) with 54 proteins being significantly different (31 higher, 23 lower) in LSC than in either Bulk or CD34+ cells. Sixty-seven proteins differed significantly between CD34+ and Bulk blasts (n=69 cases). Protein expression patterns in LSC and CD34+ differed markedly from normal CD34+ cells. LSC were distinct from CD34+ and Bulk cells by principal component and by protein signaling network analysis which confirmed individual protein analysis. Potential targetable submodules in LSC included the proteins PU.1(SP1), P27, Mcl1, HIF1α, cMET, P53, Yap, and phospho-Stats 1, 5 and 6. Protein expression and activation in LSC differs markedly from other blast populations suggesting that studies of AML biology should be performed in LSC.

Highlights

  • Acute Myelogenous Leukemia (AML) patients die of their disease when therapy fails to eradicate all the neoplastic cells, resulting in rapid or delayed regrowth of leukemic blasts

  • The discovery of leukemia stemlike cells (LSC) or initiating cells (LIC) generated the hypothesis that cells crucial for leukemia regrowth exist within the LSC pool rather than the bulk AML population[1]

  • Protein expression levels for all 121 antibodies were compared between the five different AML subsets including two intra-subset comparisons: CD34+ vs. CD34- and CD34+CD38+ vs. CD34+CD38- and three inter-subset comparisons: CD34+CD38- vs. CD34+, CD34+CD38- vs. Bulk and CD34+ vs. Bulk

Read more

Summary

Introduction

Acute Myelogenous Leukemia (AML) patients die of their disease when therapy fails to eradicate all the neoplastic cells, resulting in rapid (primary refractory) or delayed (relapse) regrowth of leukemic blasts. The discovery of leukemia stemlike cells (LSC) or initiating cells (LIC) generated the hypothesis that cells crucial for leukemia regrowth exist within the LSC pool rather than the bulk AML population[1]. If this hypothesis is true, improving therapy for AML will depend on understanding how the biology of the chemoresistant LSC differs from the chemosensitive non-stem leukemic cells. LSC are further distinguished from normal HSC by characteristics within the side population by flow cytometry[5].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.