Abstract

IntroductionThe development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the 'whole joint’, the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable 'snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF.MethodsA quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines.ResultsKey results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA.ConclusionsThe results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a 'chronic wound’ that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which could limit proteolytic activity that ultimately leads to cartilage destruction.

Highlights

  • The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels

  • Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in synovial fluid (SF) from both early and late OA

  • The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a ‘chronic wound’ that progresses irreversibly from early to later stages of OA

Read more

Summary

Introduction

The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable ‘snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF. Methods: A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). Hip and knee replacement surgeries accounted for 35% of total arthritis-related procedures during hospitalization in the last year [3]. In 2004, there were 454,652 total knee replacements, 232,857 total hip replacements, 41,934 total shoulder replacements and 12,055 other joint replacements in the United States [4]. While the clinical outcome of OA is clearly similar in weight-bearing and non-weight-bearing joints, the biologic similarity is less recognized

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call