Abstract

Mutations in cohesin genes have been identified in Cornelia de Lange syndrome (CdLS), but its etiopathogenetic mechanisms are still poorly understood. To define biochemical pathways that are affected in CdLS, we analyzed the proteomic profile of CdLS cell lines carrying mutations in the core cohesin genes, SMC1A and SMC3. Dysregulated protein expression was found in CdLS probands compared to controls. The proteomics analysis was able to discriminate between probands harboring mutations in the different domains of the SMC proteins. In particular, proteins involved in the response to oxidative stress were specifically down-regulated in hinge mutated probands. In addition, the finding that CdLS cell lines show an increase in global oxidative stress argues that it could contribute to some CdLS phenotypic features such as premature physiological aging and genome instability. Finally, the c-MYC gene represents a convergent hub lying at the center of dysregulated pathways, and is down-regulated in CdLS. This study allowed us to highlight, for the first time, specific biochemical pathways that are affected in CdLS, providing plausible causal evidence for some of the phenotypic features seen in CdLS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.