Abstract

The molecular pathology of lung injury in patients with Corona Virus Disease 2019 (COVID-19) remain unclear. In this study, we performed a proteomic study of lung tissues from seven patients with COVID-19, and eight without. Lung parenchymal tissues with COVID-19 were obtained from autopsy samples, while control samples were obtained from paracancerous tissues. Proteins were extracted using phenol extraction. A tandem mass tag-based quantitative proteomic approach combined with bioinformatic analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. A total of 6,602, and 6,549 proteins were identified in replicates 1 and 2, respectively. Of these, 307, and 278, respectively, were identified as differentially expressed proteins (DEPs). In total, 216 DEPs were identified in this study. These proteins were enriched in 189 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The downregulated proteins are mainly involved in focal adhesion (n = 5), and the PI3K-Akt signaling pathway (n = 4). The upregulated proteins were related to neutrophil extracellular trap (NET) formation (n = 16), and the phagosome pathway (n = 11). The upregulated proteins in these two pathways interact with one another. Further immunohistochemistry verified NET enrichment in the tissues with COVID-19 compared to the controls. Our results systematically outlined the proteomic profiles of the lung's response to SARS-CoV-2 infection and indicated that NET formation was hyper-activated. These results will hopefully provide new evidence for understanding the mechanism behind fatal COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.