Abstract

Caenorhabditis elegans has been the preferred model system for many investigators to study pathogenesis. In the present investigation, regulation of C. elegans proteome was explored against V. alginolyticus infection using quantitative proteomics approach. Proteins were separated using 2D-DIGE and the differentially regulated proteins were identified using PMF and MALDI TOF/TOF analysis. The results thus obtained were validated using Western blotting for candidate proteins. The corresponding transcriptional regulation was quantified subsequently using real-time PCR. Interaction network for candidate proteins was predicted using search tool for the retrieval of interacting genes/proteins (STRING) and functional validation was performed using respective mutant strains. Out of the 25 proteins identified, 21 proteins appeared to be upregulated while four were downregulated. Upregulated proteins included those involved in stress-response (PDI-2, HSP-6), immune-response (protein kinase -18, GST-8) and energy-production (ATP-2) while proteins involved in structural maintenance (IFB-2) and lipid metabolism (SODH-1) were downregulated. The roles of these players in the host system during Vibrio infection was analyzed in vivo using wild type and mutant C. elegans. Survival assays using mutants lacking pdi-2, ire-1, and xbp-1 displayed enhanced susceptibility to V. alginolyticus. Cellular stress generated by V. alginolyticus was determined using ROS assay. This is the first report of proteome changes in C. elegans against V. alginolyticus challenge and highlights the significance of unfolded protein response (UPR) pathway during bacterial infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call