Abstract

IntroductionLong-term head-down bed rest (HDBR) results in musculoskeletal losses similar to those observed during long-term space flight. Agents such as testosterone, in addition to regular exercise, are effective countermeasures for reducing loss of skeletal muscle mass and function.ObjectiveWe investigated the skeletal muscle proteome of healthy men in response to long term HDBR alone (CON) and to HDBR with exercise (PEX) or exercise plus testosterone (TEX) countermeasures.MethodBiopsies were performed on the vastus lateralis before (pre) HDBR and on HDBR days 32 (mid) and 64 (post). Extracted proteins from these skeletal muscle biopsies were subjected to 2-dimensional gel electrophoresis (2DE), stained for phosphoproteins (Pro-Q Diamond dye) and total proteins (Sypro Ruby dye). Proteins showing significant fold differences (t-test p ≤ 0.05) in abundance or phosphorylation state at mid or post were identified by mass spectroscopy (MS).ResultsFrom a total of 932 protein spots, 130 spots were identified as potentially altered in terms of total protein or phosphoprotein levels due to HDBR and/or countermeasures, and 59 unique molecules emerged from MS analysis. Top canonical pathways identified through IPA included calcium signaling, actin cytoskeleton signaling, integrin linked kinase (ILK) signaling, and epithelial adherens junction signaling. Data from the pre-HDBR proteome supported the potential for predicting physiological post-HDBR responses such as the individual’s potential for loss vs. maintenance of muscle mass and strength.ConclusionsHDBR resulted in alterations to skeletal muscle abundances and phosphorylation of several structural and metabolic proteins. Inclusion of exercise alone or in combination with testosterone treatment modulated the proteomic responses towards cellular reorganization and hypertrophy, respectively. Finally, the baseline proteome may aid in the development of personalized countermeasures to mitigate health risks in astronauts as related to loss of muscle mass and function.

Highlights

  • Long-term head-down bed rest (HDBR) results in musculoskeletal losses similar to those observed during long-term space flight

  • From a total of 932 protein spots, 130 spots were identified as potentially altered in terms of total protein or phosphoprotein levels due to HDBR and/or countermeasures, and 59 unique molecules emerged from mass spectroscopy (MS) analysis

  • Skeletal muscle protein turnover is regulated through an intricate process involving biochemical and mechanical signals

Read more

Summary

Methods

Subjects were recruited through the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) testing facility at the Johnson Space Center (JSC) in Houston, TX. Screening, including the JSC Human Test Subject Facility physical examination and psychological evaluations were completed at NASA JSC. The study complied with the Declaration of Helsinki and was approved by The University of Texas Medical Branch (UTMB) Institutional Review Board (IRB) and by the NASA Committee for the Protection of Human Subjects (CPHS). Written informed consent was obtained from all subjects, and subjects were studied at the NASA Flight Analogs Research Unit (FARU) at UTMB. This research was conducted as part of a larger integrated NASA bed rest study campaign registered with ClinicalTrials.gov (NCT00891449).

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call