Abstract
Cold-adaptive methanogens contribute significantly to methane emission from the cold area, while the cold-adaptive mechanisms used by Archaea remain elusive. Methanolobus psychrophilus R15, a cold-adaptive methanogen isolated from a Tibetan plateau wetland, grows at 0-25 °C and optimally at 18 °C when isolated; however, it grows optimally at 30 °C after culturing at 18 °C for several years. Aiming to gain insights into the protein profiles that are involved in optimal growth and cold adaptation of this methanogen, here, we performed a comparative proteomic study using 2D DIGE on the cultures grown at 30, 18 and 4 °C. 1439 protein spots (3167 ORFs annotated in the R15 genome) were detected, and 202 of 322 differentially expressed protein spots were identified by MALDI-TOF/TOF. The protein abundance of most enzymes involved in methanogenesis, energy conservation and central metabolism were increased at 30 °C, while most ribosome proteins were decreased at 30 °C. Proteasome and ROS scavengers increased expressions at 4 °C, suggesting more aberrant proteins and ROS formed at lower temperatures. Different from the cold-adaptive Methanococcoides burtonii, some chaperones were increased at 4 °C, implying that protein folding was impaired at cold in this psychrophilic archaeon. This study indicates that diverse cold-adaptive mechanisms can be used by different methanogenic Archaea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.