Abstract

The monitoring of changes in the protein composition of the cerebrospinal fluid (CSF) can be used as a sensitive indicator of central nervous system (CNS) pathology, yet its systematic application to analysis of CNS neoplasia has been limited. There is a pressing need for both a better understanding of gliomagenesis and the development of reliable biomarkers of the disease. In this report, we used two proteomic techniques, two-dimensional gel electrophoresis (2-DE), and cleavable Isotope-Coded Affinity Tag (cICAT) to compare CSF proteomes to identify tumor- and grade-specific biomarkers in patients bearing brain tumors of differing histologies and grades. Retrospective analyses were performed on 60 samples derived from astrocytomas WHO grade II, III, and IV, schwannomas, metastastic brain tumors, inflammatory samples, and non-neoplastic controls. We identified 103 potential tumor-specific markers of which 20 were high-grade astrocytoma-specific. These investigations allowed us to identify a spectrum of signature proteins that could be used to distinguish CSF derived from control patients versus those with low- (AII) or high-grade (AIV) astrocytoma. These proteins may represent new diagnostic, prognostic, and disease follow-up markers when used alone or in combination. These candidate biomarkers may also have functional properties that play a critical role in the development and malignant progression of human astrocytomas, thus possibly representing novel therapeutic targets for this highly lethal disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call