Abstract

Acquired resistance to beta-lactams is mainly mediated by extended-spectrum beta-lactamases (ESBLs) that confer bacterial resistance to all beta-lactams except carbapenems and cephamycins, which are inhibited by other beta-lactamase inhibitors such as clavulanic acid. Although ESBLs still constitute the first cause of resistance to beta-lactams among Escherichia coli , other “new beta-lactamases” conferring resistance to carbapenems, such as metallo-beta-lactamases (MBL) and KPC carbapenemases, or to cephamycins, such as CMY enzymes, have more recently emerged and are often associated with ESBLs. In order to identify and characterize the proteome of extended-spectrum β-lactamase (ESBL) type TEM-52 and CMY-2 producing- Escherichia coli strains of human clinical origin a bidimensional electrophoresis (2-DE) technique with an isoelectric focusing followed by a SDS-PAGE, were used. Full proteomic studies were conducted in the same IEF and SDS-PAGE conditions, for two protein samples of E. coli strains with similar antibiotic-resistance profiles recovered from human clinical sources. A total of 64 and 91 spots were recovered and identified in C583 and C580 strains, respectively. Our results will be helpful for further understanding of antibiotic-resistant mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.