Abstract
The chicken small intestine undergoes structural and functional changes during the early posthatch period to accommodate the transition from a lipid-rich diet inside the egg to a carbohydrate- and protein-based diet. Many of the enterocyte brush-border membrane-associated proteins responsible for mediating changes in nutrient utilization are unknown. The objective of this study was to conduct a proteomic analysis of chicken small intestine during the early posthatch period. We isolated brush-border membrane at day of hatch and days 1, 3, 7, and 14 posthatch from the small intestine of 2 genetic lines of broilers that differ in growth performance, and performed 2D gel-electrophoresis. A total of 1693 spots were analyzed by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF). In total, 132 different proteins were identified and grouped according to biological function. Of these, there were 10 nutrient transporters, 9 digestive enzymes, and 17 proteins associated with cytoskeletal structure and microvilli organization. The remaining proteins were classified as basolateral membrane (3), endosomal/membrane trafficking (8), signaling (14), metabolic (33), degradative (5), stress-related (5), protein synthesis machinery/mitochondria/nucleus (19), immunologic (1), or unknown (8). Of the spots in which proteins were identified, there were 10 that showed an effect of broiler genetic line on protein spot density (P<0.001) and 19 spots showing a correlation of broiler genetic line x age (P<0.001). Identification of brush-border membrane-associated proteins is an important step in furthering our understanding of digestion and absorption in the chicken.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.