Abstract
Heavy-metal pollution of aquatic ecosystems is a widespread phenomenon after industrial consumption. Whether aquatic organisms are adapted to the heavy-metal pollutants or not, such environmental stress causes changes in physiological responses. In this study, the aquatic midge, Chironomus riparius Meigen, was used to find changes of expression of proteins in relation to cadmium exposure. Dose-response relationships between cadmium concentrations and mortality of 3rd instar midge larvae were observed and the protein levels were compared using PD-Quest after 2-DE. Comparing the intensity of protein spots, 21 proteins decreased and 18 proteins increased in response to cadmium treatment. With increased proteins, three enzymes such as S-adenosylmethionine decarboxylase, O-methyltransferase, and aspartokinase were involved in the glutathione biosynthesis and a key enzyme regulating fatty acid biosynthesis, oleyl-acyl carrier protein thioesterase was also identified. According to the functional classification of decreased levels of proteins, they were involved in energy production, protein fate, nucleotide biosynthesis, cell division, transport and binding, signal transduction, and fatty acid and phospholipid metabolism in the cell. In addition, phenol hydroxylase, thioesterase, zinc metalloprotease, and aspartate kinase were newly expressed after cadmium exposure at the concentration of the LC(10 )value. Therefore, these proteins seem to be potential biomarkers for cadmium exposure in the aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.